
Sparsity for efficient LLM inference
Kai Sheng Tai

CIS 7000: Large Language Models (Fall 2024)

Today’s lecture

2

● What we won’t cover:
- Sparsity in ML and statistics more broadly
- Long history:

Lasso (Tibshirani, 1996),
Compressed sensing (Candes, Romberg, Tao, 2006; Donoho 2006),
etc.

● What we will cover:
- Sparsity as applied to LLMs

(in particular, LLM inference)

What do we mean by “sparsity”?

3

● The sparsity of a vector/matrix/tensor is the fraction of its
entries that are exactly zero.

● A vector/matrix/tensor with a “large” fraction of zero
entries is said to be sparse.

Otherwise, it is said to be dense.

Sparsity patterns

Fig: Elhoushi et al. (2024). Speeding up ViTs using Block Sparsity. https://pytorch.org/blog/speeding-up-vits/ 4

unstructured row/column/
”channelwise”

N:M/
“semi-structured”

block

● Sparsity pattern: the arrangement of zeros in a sparse matrix

How does sparsity help?

5

● Compute cost
- sparse matrix multiplication requires fewer FLOPs

● Storage cost
- sparse matrices can be encoded more compactly,

e.g., tuple of (nonzero vals, bitmap of nonzero locs)
- can improve computational performance if bounded by

accelerator memory bandwidth

● Sparsity realizes a quality-performance tradeoff:
- we typically get reduced quality at higher sparsities

Practical speedups depend on hardware & kernel support

6

● We use hardware-specific compute kernels to run matmuls efficiently

● Some structured sparsity patterns are compatible with standard dense kernels.
Examples:

- remove all-zero rows from a row-sparse matrix
- remove subnetworks with all-zero parameters from model

● Other sparsity patterns require specialized kernels.
Examples (hardware → supported sparsity patterns):

- x86 CPU (Intel MKL) unstructured
- GPU (NVIDIA cuSPARSE) block, 2:4
- Cerebras CS-2 unstructured

Practical speedups depend on hardware & kernel support

Bai & Li (2023). Structured Sparsity in the NVIDIA Ampere Architecture and Applications in Search Engines.
https://developer.nvidia.com/blog/structured-sparsity-in-the-nvidia-ampere-architecture-and-applications-in-search-engines/7

● Example of a specialized kernel: cuSPARSELt 2:4 sparsity

Sparsity patterns

Fig: Elhoushi et al. (2024). Speeding up ViTs using Block Sparsity. https://pytorch.org/blog/speeding-up-vits/ 8

unstructured row/column/
”channelwise”

N:M/
“semi-structured”

block

● Sparsity pattern: the arrangement of zeros in a sparse matrix

Sparsity patterns can be static or dynamic

Fig: Hoefler et al. (2021). Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks. JMLR. 9

(“static” sparsity) (“dynamic” sparsity)

● Static sparsity is fixed for all inputs.
Dynamic sparsity changes for each input.

Today’s topics

10

● Static sparsity
- weight pruning:

cut down a large LLM to a smaller LLM

● Dynamic sparsity
- mixture-of-experts models:

activate subnetworks in an input-dependent way

- KV cache sparsification:
keep only a subset of past K/V activations

Today’s topics

11

● Static sparsity
- weight pruning:

cut down a large LLM to a smaller LLM

● Dynamic sparsity
- mixture-of-experts models:

activate subnetworks in an input-dependent way

- KV cache sparsification:
keep only a subset of past K/V activations

Given:
- parameters
- loss function

A formalization of the weight pruning problem

12

Given:
- parameters
- loss function
- locally optimal solution

A formalization of the weight pruning problem

13

Given:
- parameters
- loss function
- locally optimal solution

A formalization of the weight pruning problem

14

“post-training
sparsification”

Given:
- parameters
- loss function
- locally optimal solution

A formalization of the weight pruning problem

15

Optimize:

“post-training
sparsification”

Given:
- parameters
- loss function
- locally optimal solution

A formalization of the weight pruning problem

16

Optimize:

perturbed parameters

“post-training
sparsification”

Given:
- parameters
- loss function
- locally optimal solution

A formalization of the weight pruning problem

17

Optimize:

perturbed parameters

“post-training
sparsification”

Since solving this combinatorial optimization problem is NP-hard,
we turn to tractable approximations

A simple heuristic: magnitude pruning

18

Procedure:
1. Identify weights with the smallest magnitude
2. Set these weights to zero
3. Retrain model, keeping pruned weights at zero
4. (Optional) Repeat until desired sparsity reached

Fig: Hoefler et al. (2021). Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks. JMLR.

A simple heuristic: magnitude pruning

19

Procedure:
1. Identify weights with the smallest magnitude
2. Set these weights to zero
3. Retrain model, keeping pruned weights at zero
4. (Optional) Repeat until desired sparsity reached

Fig: Hoefler et al. (2021). Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks. JMLR.

Problem:
requires retraining to recover quality, which is
costly for LLMs

Can we prune without retraining?

A greedy heuristic: prune weights one at a time

20Fig: Frantar et al. (2022). Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning. ICML.

A greedy heuristic: prune weights one at a time

21

Taylor expand to second order:

= 0 by assumption that
θ* is local minimum

A greedy heuristic: prune weights one at a time

22

Taylor expand to second order:

= 0 by assumption that
θ* is local minimum

Solve to estimate perturbation that sets ith weight to zero:

perturbation to all parameters that
zeroes out ith weight

increase in loss from zeroing out ith
weight + adjusting remaining parameters

“Saliency”: Use to select
which weight to prune

23

NeurIPS
(then NIPS)
1992

24

NeurIPS
(then NIPS)
1989

Predecessor to Optimal
Brain Surgeon: assumes
Hessian is diagonal

A greedy heuristic: prune weights one at a time

25

Taylor expand to second order:

= 0 by assumption that
θ* is local minimum

Solve to estimate perturbation that sets ith weight to zero:

perturbation to all parameters that
zeroes out ith weight

increase in loss from zeroing out ith
weight + adjusting remaining parameters

“Saliency”: Use to select
which weight to prune

A greedy heuristic: prune weights one at a time

26

Taylor expand to second order:

= 0 by assumption that
θ* is local minimum

Solve to estimate perturbation that sets ith weight to zero:

perturbation to all parameters that
zeroes out ith weight

increase in loss from zeroing out ith
weight + adjusting remaining parameters

Problems:
- Hessian inverses are expensive to compute (O(d3))
- Need to update H-1 after each step to account for pruned weight

How do we scale Optimal Brain Surgeon (OBS) to LLM-size models?

SparseGPT: scaling up OBS-based pruning

27
Frantar & Alistarh (2023). SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot. ICML.

SparseGPT: scaling up OBS-based pruning

28
Frantar & Alistarh (2023). SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot. ICML.

Main tricks for scaling up OBS:
- Prune layer-by-layer instead of entire model, minimizing the Euclidean loss

SparseGPT: scaling up OBS-based pruning

29
Frantar & Alistarh (2023). SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot. ICML.

Main tricks for scaling up OBS:
- Prune layer-by-layer instead of entire model, minimizing the Euclidean loss

- Pay the O(d3) cost of Hessian inversion only once per weight matrix, sharing the
Hessian for all rows by restricting the set of “loss compensating” weights

SparseGPT: scaling up OBS-based pruning

Frantar & Alistarh (2023). SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot. ICML.
30

● Scalability: pruned OPT-175B in 4 hours on single A100-80GB
● Calibration data: 128 2048-token sequences from C4 dataset

SparseGPT: scaling up OBS-based pruning

Frantar & Alistarh (2023). SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot. ICML.
31

● Applied to unstructured and semi-structured sparsity patterns

Recap of post-training sparsification so far

32

● Combinatorial optimization: intractable, so introduce greedy heuristics

● Magnitude pruning: simple but requires iterative retraining

● Optimal Brain Surgeon (OBS): optimal single-parameter updates under
quadratic model of loss; requires expensive Hessian inversions

● SparseGPT: scalable approximation of OBS; local parameter updates
requiring fewer Hessian inversions

Recap of post-training sparsification so far

33

● Combinatorial optimization: intractable, so introduce greedy heuristics

● Magnitude pruning: simple but requires iterative retraining

● Optimal Brain Surgeon (OBS): optimal single-parameter updates under
quadratic model of loss; requires expensive Hessian inversions

● SparseGPT: scalable approximation of OBS; local parameter updates
requiring fewer Hessian inversions

What about structured sparsity?

Minitron: Structured pruning to obtain smaller dense models

Muralidharan et al. (2024). Compact Language Models via Pruning and Knowledge Distillation. NeurIPS.
34

Minitron-8B and -4B: created by
pruning Nemotron-4 15B and
applying a lightweight finetuning
process.

These models outperform
Nemotron-3 8B, which was
trained “from scratch”.

Muralidharan et al. (2024). Compact Language Models via Pruning and Knowledge Distillation. NeurIPS. 35

Minitron: Structured pruning to obtain smaller dense models

Muralidharan et al. (2024). Compact Language Models via Pruning and Knowledge Distillation. NeurIPS. 36

Minitron: Structured pruning to obtain smaller dense models

Procedure:

● Very simple heuristic for scoring neurons/attention heads/layers:
Use a small calibration dataset to measure mean/average norm of
output activations

● Remove lowest-scoring neurons/attention heads/layers and finetune
network for a few hundred iterations

Muralidharan et al. (2024). Compact Language Models via Pruning and Knowledge Distillation. NeurIPS.
37

Minitron: Structured pruning to obtain smaller dense models
Experiments:
● Base model: 15B parameter LLM trained on 8T tokens
● Calibration data: 1024 sequences
● Retraining data: 1.8B tokens (400 iterations)

Muralidharan et al. (2024). Compact Language Models via Pruning and Knowledge Distillation. NeurIPS.
38

Minitron: Structured pruning to obtain smaller dense models

Empirically, pruning network width outperforms pruning depth

Today’s topics

39

● Static sparsity
- weight pruning:

cut down a large LLM to a smaller LLM

● Dynamic sparsity
- mixture-of-experts models:

activate subnetworks in an input-dependent way

- KV cache sparsification:
keep only a subset of past K/V activations

Mixture-of-Experts models

● Idea: Not every part of the network needs to used for every input
- the model may comprise several “specialist” or “domain-specific”

subnetworks
- we call each such subnetwork an “expert”

● A form of structured sparsity where the sparsity pattern is input-dependent

● Network needs a mechanism to route computation to the right expert(s):
“expert routing”

40

A popular parameterization of expert
routing.

● N experts

● Expert logits

● Gating value

● Output: weighted sum over top-k
experts

Expert routing via softmax weights

Fedus et al. (2022). A Review of Sparse Expert Models in Deep Learning. arXiv. 41

Top-k routing

Fedus et al. (2022). A Review of Sparse Expert Models in Deep Learning. arXiv. 42

Jacobs et al. (1991). Adaptive Mixtures of Local Experts. Neural Computation. 43

A new instantiation of
an old idea…

44

Mixture-of-Experts in RNNs

Shazeer et al. (2017). Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer. ICLR. 45

Mixture-of-Experts in Transformers

Fedus et al. (2022). Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. JMLR. 46

MoE decouples parameter count from compute cost

47Du et al. (2022). GLaM: Efficient scaling of language models with mixture-of-experts. ICML

When should you consider using MoE?

48

● When there is plentiful accelerator memory to host model parameters,
but we want to reduce compute/energy usage

● When sharding model parameters across several devices during inference
- natural fit for expert routing
- need ability to load balance requests to each device

MoE optimization

49

● Problem: how do we train the router?
- top-k selection results in zero gradients for unselected experts
- “soft selection” relaxations require running all experts during training,

which is expensive

● Heuristic approaches are common in practice:
- Add “jitter” noise to router logits during training (Fedus et al., 2022)
- Add batch-wise “load balancing” auxiliary loss (Fedus et al., 2022)
- “Router z-loss”: Penalize large router logit values (Zoph et al., 2022)

Fedus et al. (2022). Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. JMLR.
Zoph et al. (2022). ST-MoE: Designing Stable and Transferable Sparse Expert Models. arXiv.

MoE optimization: A more principled approach?

50

● Fundamental problem: gradient estimation
- Backpropagation requires differentiable computation graphs
- Sampling discrete variables (e.g., for expert routing) is non-differentiable
- Need alternative gradient estimators for such situations

● SparseMixer: gradient estimation with sparsely activated experts

Liu et al. (2023). Sparse backpropagation for MoE training. NeurIPS.
Liu et al. (2023). Bridging Discrete and Backpropagation: Straight-Through and Beyond. NeurIPS.

Today’s topics

51

● Static sparsity
- weight pruning:

cut down a large LLM to a smaller LLM

● Dynamic sparsity
- mixture-of-experts models:

activate subnetworks in an input-dependent way

- KV cache sparsification:
keep only a subset of past K/V activations

Dynamic activation sparsity: KV Cache Pruning

52

● For autoregressive generation, we maintain a history of all
previous key and value vectors (the “KV cache”) to avoid
recomputation

● Memory usage scales linearly with the length of the generated
sequence

● We can reduce both memory usage and computational cost by
implementing a KV cache eviction policy

Zhang et al. (2023). H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models. NeurIPS

Observation: attention matrices are approximately sparse

53Zhang et al. (2023). H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models. NeurIPS

● Additionally, the cumulative
attention scores for each token
follows a power law distribution.

H2O: Heavy Hitter Oracle

54Zhang et al. (2023). H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models. NeurIPS

● Greedy heuristic: only keep k
tokens with highest cumulative
attention scores so far.

● Example figure: cache size k = 3
“and” and “played” are evicted
since they have the lowest
cumulative scores

H2O: Heavy Hitter Oracle

55Zhang et al. (2023). H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models. NeurIPS

● “local” baseline keeps only most recent tokens

Recap

56

● Static sparsity
- weight pruning:

cut down a large LLM to a smaller LLM

● Dynamic sparsity
- mixture-of-experts models:

activate subnetworks in an input-dependent way

- KV cache sparsification:
keep only a subset of past K/V activations

- Optimal brain surgeon
- SparseGPT: Fast OBS for LLMs
- Minitron structured pruning

- Top-k softmax routing
- Optimization issues

- H2O: evict tokens with
lowest cumulative
attention

