Sparsity for efficient LLM inference

Kai Sheng Tai
CIS 7000: Large Language Models (Fall 2024)

Today'’s lecture

e What we won't cover:
- Sparsity in ML and statistics more broadly
- Long history:
Lasso (Tibshirani, 1996),
Compressed sensing (Candes, Romberg, Tao, 2006; Donoho 2006),
etc.

e What we will cover:
- Sparsity as applied to LLMs
(in particular, LLM inference)

What do we mean by “sparsity”?

e The sparsity of a vector/matrix/tensor is the fraction of its
entries that are exactly zero.

e A vector/matrix/tensor with a “large” fraction of zero
entries is said to be sparse.

Otherwise, it is said to be dense.

Sparsity patterns

e Sparsity pattern: the arrangement of zeros in a sparse matrix

[
.
EE
N
L
O _
HEE N
HEEN
unstructured row/column/ N:M/ block

“channelwise” “semi-structured”

Fig: Elhoushi et al. (2024). Speeding up ViTs using Block Sparsity. https://pytorch.org/blog/speeding-up-vits/ 4

How does sparsity help?

e Compute cost
- sparse matrix multiplication requires fewer FLOPs

e Storage cost
- sparse matrices can be encoded more compactly,
e.g., tuple of (nonzero vals, bitmap of nonzero locs)
- can improve computational performance if bounded by
accelerator memory bandwidth

e Sparsity realizes a quality-performance tradeoff:
- we typically get reduced quality at higher sparsities

Practical speedups depend on hardware & kernel support

e We use hardware-specific compute kernels to run matmuls efficiently

e Some structured sparsity patterns are compatible with standard dense kernels.
Examples:
- remove all-zero rows from a row-sparse matrix
- remove subnetworks with all-zero parameters from model

e Other sparsity patterns require specialized kernels.
Examples (hardware — supported sparsity patterns):
- x86 CPU (Intel MKL) unstructured
- GPU (NVIDIA cuSPARSE) block, 2:4
- Cerebras CS-2 unstructured

Practical speedups depend on hardware & kernel support

e Example of a specialized kernel: cuSPARSELt 2:4 sparsity

Structured-sparse Structured-sparse and
matrix W compressed matrix W

Fine-grained
structured-sparse
matrix format

_—
R X C/2 elements +
R X C/2 2bits meta
data

— C/2 = I—IC/2

D = zero entry Non-zero data 2-bits
values indices

Bai & Li (2023). Structured Sparsity in the NVIDIA Ampere Architecture and Applications in Search Engiges.
https://developer.nvidia.com/blog/structured-sparsity-in-the-nvidia-ampere-architecture-and-applications-in-search-engines/

Sparsity patterns

e Sparsity pattern: the arrangement of zeros in a sparse matrix

[
.
EE
N
L
O _
HEE N
HEEN
unstructured row/column/ N:M/ block

“channelwise” “semi-structured”

Fig: Elhoushi et al. (2024). Speeding up ViTs using Block Sparsity. https://pytorch.org/blog/speeding-up-vits/ 8

Sparsity patterns can be static or dynamic

e Static sparsity is fixed for all inputs.

Dynamic sparsity changes for each input.

(“static” sparsity)

Sparsification

(“dynamic” sparsity)

sparsity) T —

Model Sparsity

(per model)
Weights Neurons Neuron-like
(filters/channels/heads)
$/\ % structured sparsity
unstructured structured

(e.g., fine-grained) (e.g., blocked/strided)

affects inference + forward pass

Fig: Hoefler et al. (2021). Sparsity in Deep Learning:

Ephemeral Sparsity .‘\0/.

(per example)

<

Gradients Errors
91 eq
gradient-based optimization

Ve »

Dropout
(Activations/Weights)

Optimizer
State

affects training
Activations Conditional computation

(e.g., ReLU) (route each example through a
inference + forward pass Different sparse subnetwork)

Pruning and growth for efficient inference and training in neural networks. JMLR.

9

Today'’s topics

e Static sparsity
- weight pruning:
cut down a large LLM to a smaller LLM

e Dynamic sparsity
- mixture-of-experts models:
activate subnetworks in an input-dependent way

- KV cache sparsification:
keep only a subset of past K/V activations

10

Today'’s topics

e Static sparsity
- weight pruning:
cut down a large LLM to a smaller LLM

11

A formalization of the weight pruning problem

Given:
parameters 6
loss function L(#)

12

A formalization of the weight pruning problem

Given:
- parameters 6
- loss function L(#)
- locally optimal solution 8™

13

A formalization of the weight pruning problem

Given:

- parameters 6) o
- loss function L(0) post-training

- locally optimal solution 6* sparsification”

14

A formalization of the weight pruning problem

Given:
parameters 6) o
loss function L(0) post-training
locally optimal solution 6™ sparsification
Optimize:

mingg L(0* 4+ 060) s.t. (0™ + 660) is k-sparse

15

A formalization of the weight pruning problem

Given:
- parameters 6) o
- loss function L(0) post-training
- locally optimal solution 0™ sparsification
Optimize:

mingg L(0* 4+ 060) s.t. (0™ + 660) is k-sparse

perturbed parameters

16

A formalization of the weight pruning problem

Given:
- parameters 6) o
- loss function L(0) post-training
- locally optimal solution 0™ sparsification
Optimize:

mingg L(0* 4+ 060) s.t. (0™ + 660) is k-sparse

perturbed parameters

Since solving this combinatorial optimization problem is NP-hard,
we turn to tractable approximations

17

A simple heuristic: magnitude pruning
mingg L(0* + §6) s.t. (6" + 00) is k-sparse

Procedure:

1. ldentify weights with the smallest magnitude

2. Set these weights to zero

3. Retrain model, keeping pruned weights at zero
4. (Optional) Repeat until desired sparsity reached

160000 1 160000 160000
140000 140000 140000
120000 120000 120000
" P ”
3 8 100000 & 100000
& 100000 3 3
8 g]
£ 80000 £ 80000 £ 80000
13 § 13
5 © &
& &
60000 60000 60000
40000 40000 40000
20000 20000 20000
0 0 0
-0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.6 0.08
Parameter Value Parameter Value Parameter Value
(a) Dense Network (76.0%) (b) 70% Pruned (36.1%) (c) After 3-epoch Retraining (71.4%)

1
Fig: Hoefler et al. (2021). Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks. JMLR. 8

A simple heuristic: magnitude pruning
mingg L(0* + §6) s.t. (6" + 00) is k-sparse

Procedure:

1. Identify weights with the smallest magnitude

2. Set these weights to zero

3. Retrain model, keeping pruned weights at zero
4. (Optional) Repeat until desired sparsity reached

Problem:
requires retraining to recover quality, which is
costly for LLMs

Can we prune without retraining?

1
Fig: Hoefler et al. (2021). Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks. JMLR. 9

A greedy heuristic: prune weights one at a time

mingg L(0* 4+ 060) s.t. (0* 4 00) is k-sparse

1. Pick optimal weight to prune 2. Optimally update all remaining weights

w
h
Compensate
Errors

Fig: Frantar et al. (2022). Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning. ICML. 20

A greedy heuristic: prune weights one at a time

mingg L(0" + 00) s.t. (0* + 00) is k-sparse

Taylor expand to second order: |
L(6* 4+ 86) — L(0*) ~ g7 66 + 5(59TH 66

= 0 by assumption that
0% is local minimum

21

A greedy heuristic: prune weights one at a time

mingg L(0" + 00) s.t. (0* + 00) is k-sparse

Taylor expand to second order:
* * T 1 T
L(6" +66) — L(67) ~ g7 66 + 667 H 66

= 0 by assumption that
0% is local minimum

Solve to estimate perturbation that sets ith weight to zero:

. 0. . 2 —

66" = — = [H] SLO = U ey
perturbation to all parameters that increase in loss from zeroing out ith
zeroes out ith weight weight + adjusting remaining parameters

22

Second order derivatives for network
pruning: Optimal Brain Surgeon

Babak Hassibi* and David G. Stork
Ricoh California Research Center
2882 Sand Hill Road, Suite 115
Menlo Park, CA 94025-7022
stork@crc.ricoh.com

and

* Department of Electrical Engineering
Stanford University
Stanford, CA 94305

Abstract

We investigate the use of information from all second order derivatives of the error
function to perform network pruning (i.e., removing unimportant weights from a trained
network) in order to improve generalization, simplify networks, reduce hardware or
storage requirements, increase the speed of further training, and in some cases enable rule
extraction. Our method, Optimal Brain Surgeon (OBS), is significantly better than
magnitude-based methods and Optimal Brain Damage [Le Cun, Denker and Solla, 1990],
which often remove the wrong weights. OBS permits the pruning of more weights than
other methods (for the same error on the training set), and thus yields better
generalization on test data. Crucial to OBS is a recursion relation for calculating the
inverse Hessian matrix H™! from training data and structural information of the net. OBS
permits a 90%, a 76%, and a 62% reduction in weights over backpropagation with weight
decay on three benchmark MONK's problems [Thrun et al., 1991]. Of OBS, Optimal
Brain Damage, and magnitude-based methods, only OBS deletes the correct weights from
a trained XOR network in every case. Finally, whereas Sejnowski and Rosenberg [1987]
used 18,000 weights in their NETtalk network, we used OBS to prune a network to just
1560 weights, yielding better generalization.

NeurlPS
(then NIPS)
1992

23

Optimal Brain Damage

Yann Le Cun, John S. Denker and Sara A. Solla
AT&T Bell Laboratories, Holmdel, N. J. 07733

ABSTRACT

We have used information-theoretic ideas to derive a class of prac-
tical and nearly optimal schemes for adapting the size of a neural
network. By removing unimportant weights from a network, sev-
eral improvements can be expected: better generalization, fewer
training examples required, and improved speed of learning and/or
classification. The basic idea is to use second-derivative informa-
tion to make a tradeoff between network complexity and training
set error. Experiments confirm the usefulness of the methods on a
real-world application.

Predecessor to Optimal
Brain Surgeon: assumes
Hessian is diagonal

NeurlPS
(then NIPS)
1989

24

A greedy heuristic: prune weights one at a time

mingg L(0" + 00) s.t. (0* + 00) is k-sparse

Taylor expand to second order:
* * T 1 T
L(6" +66) — L(67) ~ g7 66 + 667 H 66

= 0 by assumption that
0% is local minimum

Solve to estimate perturbation that sets ith weight to zero:

. 0. . 2 —

66" = — = [H] SLO = U ey
perturbation to all parameters that increase in loss from zeroing out ith
zeroes out ith weight weight + adjusting remaining parameters

25

A greedy heuristic: prune weights one at a time
Problems:
- Hessian inverses are expensive to compute (0(d®))

- Need to update H after each step to account for pruned weight

How do we scale Optimal Brain Surgeon (OBS) to LLM-size models?

Solve to estimate perturbation that sets ith weight to zero:

56 bi [H~1] 51,0 0;
p— = '7: —
[H i [H 1
perturbation to all parameters that increase in loss from zeroing out ith

zeroes out ith weight weight + adjusting remaining parameters

SparseGPT: scaling up OBS-based pruning

27
Frantar & Alistarh (2023). SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot. ICML.

SparseGPT: scaling up OBS-based pruning

Main tricks for scaling up OBS:
- Prune layer-by-layer instead of entire model, minimizing the Euclidean loss

1 1
SE W — (W 4+ 6W)all3 = SEa oW a3

2
Frantar & Alistarh (2023). SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot. ICML. 8

SparseGPT: scaling up OBS-based pruning

Main tricks for scaling up OBS:
- Prune layer-by-layer instead of entire model, minimizing the Euclidean loss

1 1
§Ex”W*l’ — (W* 4+ 6W)z|5 = §Ex\|5W93H§
- Pay the 0(d®) cost of Hessian inversion only once per weight matrix, sharing the

Hessian for all rows by restricting the set of “loss compensating” weights
w

mask M

prune

Hy,) ! Mo ol Hyp,) ! ——> Hy)' ——> (Hy)!

2
Frantar & Alistarh (2023). SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot. ICML. 9

SparseGPT: scaling up OBS-based pruning

Scalability: pruned OPT-175B in 4 hours on single A100-80GB
Calibration data: 128 2048-token sequences from C4 dataset

N ® Magnitude

S 167 SparseOPT

:L_Z ----- Dense

= 14+

2

o

§ 121 [

Fy

310+

o

(O]

[L i) e e My U R g
8_

00 01 02 03 04 05 06 07 08
Sparsity
Figure 1. Sparsity-vs-perplexity comparison of SparseGPT
against magnitude pruning on OPT-175B, when pruning to different
uniform per-layer sparsities.

Frantar & Alistarh (2023). SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot. ICML.

30

SparseGPT: scaling up OBS-based pruning

e Applied to unstructured and semi-structured sparsity patterns

60
~ e 24
A e 4:8
[50‘
z 50% Unstructured
= Dense
3 401
ol
S 30+
2z || e
3201 e
2
[0]
%10+

10-1 10° 10 102

#Params in Billions

Figure 2. Perplexity vs. model and sparsity type when compressing
the entire OPT model family (135M, 350M, ..., 66B, 175B) to
different sparsity patterns using SparseGPT.

Frantar & Alistarh (2023). SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot. ICML.

Recap of post-training sparsification so far
e Combinatorial optimization: intractable, so introduce greedy heuristics
e Magnitude pruning: simple but requires iterative retraining

e Optimal Brain Surgeon (OBS): optimal single-parameter updates under
quadratic model of loss; requires expensive Hessian inversions

e SparseGPT: scalable approximation of OBS; local parameter updates
requiring fewer Hessian inversions

32

Recap of post-training sparsification so far

Combinatorial optimization: intractable, so introduce greedy heuristics
Magnitude pruning: simple but requires iterative retraining

Optimal Brain Surgeon (OBS): optimal single-parameter updates under
quadratic model of loss; requires expensive Hessian inversions

SparseGPT: scalable approximation of OBS; local parameter updates
requiring fewer Hessian inversions

What about structured sparsity?

33

Minitron: Structured pruning to obtain smaller dense models

65

2 232
-.

MMLU Score (%)

O,
o

45 -

i itro’P4B

Gemma7B Nemotron-4 15B LLaMa-3 8B
IMinitron 8B\ £) M\
' pu ‘&j \y A\

Mistral 7B

40x cheaper
9% bettter

PhO'Z N\
l_

o

Nemotron-3 8B

LLaMa-2 7B @ Minitron (resulting models)

O‘ © Pruning start

j Pruning Path
Gem(r)naZB O Other Models

0.1 2.5 5.0 75 100 125 15.0
Cost to train the model (trillion tokens)

Minitron-8B and -4B: created by
pruning Nemotron-4 15B and
applying a lightweight finetuning
process.

These models outperform

Nemotron-3 8B, which was
trained “from scratch”.

34

Muralidharan et al. (2024). Compact Language Models via Pruning and Knowledge Distillation. NeurlPS.

Minitron: Structured pruning to obtain smaller dense models

1. Trained LLM

2. Estimate importance

) [Emb1 Emb1 R
m
w . g g g Emb1 Head1 m CH1
=
= € v o - o o =l Emb2 b Emb2| [Head2| |Emb2| | CH 2 =
[3} = = (= o
g “g L] — c - = > d>)~. -> a>J~ <l>)'~
a g o g o = 3 Emb3| [® Emb3| |Head3| [Emb3| |CH3 &
L = @© @©
o i | < - i Emb4 Emba| |Heads| [Emba| |CH4
4. Trim WV 3. Rank
Emb4 Emb4| |Head3| |Emb4| | CH 1
Head3 1 1
Emb4 Emb4 Emb4a| [CH1 - Emb2| | T Emb2| [Head1| |Emb2| |CH4 =
= > Head1 (= > O -> g >
Emb2 Emb2 Emb2| |CH4 < Emb1 S Emb1| |Head4| [Emb1| |CH2 i
Head4
Emb3 Emb3 Head2 Emb3 CH3

Muralidharan et al. (2024). Compact Language Models via Pruning and Knowledge Distillation. NeurIPS.

35

Minitron: Structured pruning to obtain smaller dense models

Procedure:

e Very simple heuristic for scoring neurons/attention heads/layers:

Use a small calibration dataset to measure mean/average norm of
output activations

e Remove lowest-scoring neurons/attention heads/layers and finetune
network for a few hundred iterations

Muralidharan et al. (2024). Compact Language Models via Pruning and Knowledge Distillation. NeurIPS. 36

Minitron: Structured pruning to obtain smaller dense models
Experiments:

e Base model: 15B parameter LLM trained on 8T tokens
e Calibration data: 1024 sequences
e Retraining data: 1.8B tokens (400 iterations)
Models
Benchmark Metric Llama-3 Llama-2 Mistral Gemma Nemotron-4 Nemotron-3 |MINITRON
Parameters 8B 6.7B 7.3B 8.5B 15.6B 8.5B 8.3B
Non-Emb. Params 5.9B 6.4B 7B 7.7B 12.5B 6.4B 6.2B
Training Tokens >15T 2T 8T 6T 8T 3.8T 9%4B
L winogrande (5) acc 78 74 78.5 78 83.6 75.9 79.0
ED arc_challenge (25) acc_norm 58 33 60.3 61 58.8 52.8 52.6
o MMLU(5) acc 65 46 64.1 64 66.6 54.7 63.8
E hellaswag(10) acc_norm 82 79 83.2 82 84.6 78.5 80.7
2 gsm8k(5) acc 50 14 57 50 48.5 24.0 513
N, truthfulga(0) mc2 44 39 42.6 45 40.7 36.5 42.6
XLSum en (20)(3) rougeLL 31 31 4.80 17 32 30.9 31.2
Codin MBPP(0) pass@1 42 20 38.8 39 38 27.04 35.2
€ humaneval (n=20)(0) pass@1 28 12 28.7 32 354 20.7 31.6

Muralidharan et al. (2024). Compact Languége Models via Pruning and Knowledge Distillation. NeurlPS.

Minitron: Structured pruning to obtain smaller dense models

Model Layers Hidden Size Att. Heads Query Groups MLP Hidden Parameters
Nemotron-4 15B 32 6144 48 8 24576 15.6B
Nemotron-3 8B 32 4096 32 32 16384 8.5B
MINITRON 8B 32 4096 48 8 16384 8.27B

MINITRON 4B 32 3072 24 8 9216 4.19B

T

Empirically, pruning network width outperforms pruning depth

38
Muralidharan et al. (2024). Compact Language Models via Pruning and Knowledge Distillation. NeurIPS.

Today'’s topics

e Dynamic sparsity
- mixture-of-experts models:
activate subnetworks in an input-dependent way

- KV cache sparsification:
keep only a subset of past K/V activations

39

Mixture-of-Experts models

e Idea: Not every part of the network needs to used for every input
- the model may comprise several “specialist” or “domain-specific”
subnetworks
- we call each such subnetwork an “expert”

e A form of structured sparsity where the sparsity pattern is input-dependent

e Network needs a mechanism to route computation to the right expert(s):
“expert routing”

40

Expert routing via softmax weights

Expert Weights

[Experﬂ } { Expert 2

Router Weights

-0.3|-1.6| 0.1 | 0.8 |-0.1
0.51-0.6/-11/-0.2 -0.4
12|13 0.7 |15 [-11

Expert 3

Router Scores

Expert 4

Token

Representations

Normalized
Router Scores

T T2 T3 M1 T2 T3

o | 313|014 | 074 0| 067 [005|022

0.51 [-0.25| 1.58 & [o005]003| 05

-1.32 1 1.97 | 04 1001|031] 0m
—y

2.25 | 2.61 | 0.02 31027 | 059 | 01

-2.81]-0.68 [-0.41 1 0.00 [0.02 | 0.07

A popular parameterization of expert
routing.

e Nexperts {E;}Y,

e Expertlogits h(z) =W, -z
oh (@)
e Output: weighted sum over top-k

experts y = Zpi () E;i(z)
€T

e Gatingvalue p;(z) =

Fedus et al. (2022). A Review of Sparse Expert Models in Deep Learning. arXiv.

41

Top-k routing

Top-1 Routing

fannass T

Top-2 Routing

y1 EI:%EEEI v2[TT]

,—)[Add + Normalize }1 r ;{ Add + Normalize
7y f
I’"[FFN1][FFNZ][FFN3][FFN4] [FFN1][FFNZ][FFNS”FFNA]\\: I"[FFN1][FFNZ][FFNS][FFNA]‘I::‘ [FFN1][FFN2][FFN3][FFN4]‘:

”The" HDOgll

x 1T TT]
IIThe "

Fedus et al. (2022). A Review of Sparse Expert Models in Deep Learning. arXiv.

42

Communicated by Jeffrey Elman me—————— = e

Adaptive Mixtures of Local Experts

Robert A. Jacobs

Michael I. Jordan

Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology,
Cambridge, MA 02139 USA

Steven J. Nowlan
Geoffrey E. Hinton
Departinent of Computer Science, University of Toronto,
Toronto, Canada M5S TA4
A new instantiation of

We present a new supervised learning procedure for systems composed an Old idea...
of many separate networks, each of which learns to handle a subset of

the complete set of training cases. The new procedure can be viewed

either as a modular version of a multilayer supervised network, or as

an associative version of competitive learning. It therefore provides

a new link between these two apparently different approaches. We

demonstrate that the learning procedure divides up a vowel discrimi-

nation task into appropriate subtasks, each of which can be solved by

a very simple expert network.

Jacobs et al. (1991). Adaptive Mixtures of Local Experts. Neural Computation. 43

Proceedings of 1993 International Joint Conference on Neural Networks

Hierarchical mixtures of experts and the EM algorithm

Michael 1. Jordan Robert A. Jacobs
Department of Brain and Cognitive Sciences Department of Psychology
MIT University of Rochester
Cambridge, MA 02139 Rochester, NY 14627

Abstract

We present a tree-structured architecture
for supervised learning. The statistical
model underlying the architecture is a hi-
erarchical rnixture model in which both
the mixture coefficients and the mixture
components are generalized linear models

(GLIM’s). Learning is treated as a max-
imum likelihood problem; in particular,
we present an Expectation-Maximization
(EM) algorithm for adjusting the parame-
ters of the architecture. We also develop an

it . . ; .) S om
on-line learning algorithm in which the pa I Exper, [[apert, Bprt, Expet;
rameters are updated incrementally. Com-

parative simulation results are presented in x x x x

the robot dynamics domain.

Mixture-of-Experts in RNNs

. /MoE layer

G(x),| [G(x)ns

4

Shazeer et al. (2017). Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer. ICLR. 45

Mixture-of-Experts in Transformers

y

T

[Add + Normalize

t

[Switching FFN Layer

0

[Add + Normalize

T

Self-Attention

i

X

v2[TTTTT]

Add + Normalize

’¢’ A A
T T —
' [FFN1][FFN2][FFN3][FFN4] [FFN1][FFN2][FFN3][FFN4] \:
e \" ¢
(Router | " Router

Add + Normalize

~ A

> Positional 9
~ embedding ¢

x<[ITT1TT]

More

Fedus et al. (2022). Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. JMLR.

Self-Attention
N

Positional 9
embedding

x[TTTTT]

Parameters

46

MoE decouples parameter count from compute cost

64B/64E
--e-- Dense 1378
70 »-- Sparse 83/64E— o B @
= 60 oalBE.
> 1.7B/64E /.—”
L ~ .
~ 50+ /'
>
U 7’
(© 40- 1.
.
S
wil
< ; 4 //,
20710.1B/64E"
10-%38
I I I
100 10! 102

GFlops Per Token Prediction

Du et al. (2022). GLaM: Efficient scaling of language models with mixture-of-experts. ICML

47

When should you consider using MoE?

e When there is plentiful accelerator memory to host model parameters,
but we want to reduce compute/energy usage

e When sharding model parameters across several devices during inference
- natural fit for expert routing
- need ability to load balance requests to each device

48

MoE optimization

e Problem: how do we train the router?
- top-k selection results in zero gradients for unselected experts
- “soft selection” relaxations require running all experts during training,
which is expensive

e Heuristic approaches are common in practice:
- Add “jitter” noise to router logits during training (Fedus et al., 2022)
- Add batch-wise “load balancing” auxiliary loss (Fedus et al., 2022)
- "Router z-loss": Penalize large router logit values (Zoph et al., 2022)

Fedus et al. (2022). Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. JMLR.
Zoph et al. (2022). ST-MoE: Designing Stable and Transferable Sparse Expert Models. arXiv.

49

MoE optimization: A more principled approach?

e Fundamental problem: gradient estimation

- Backpropagation requires differentiable computation graphs

- Sampling discrete variables (e.g., for expert routing) is non-differentiable
- Need alternative gradient estimators for such situations

e SparseMixer: gradient estimation with sparsely activated experts

. MoE with 8 experts | WMT'14 En-DE MoE with 16 experts | WMT'14 En-DE
v \
5.2 . 46 \
\Y)
5.1 “ \\
\' kN
—1 5.0 . 4.4 03
o \, =
o “w Al
o 49 .. ".‘_
S M *
C 48 ‘e, 4.2 . .
© ~ e . 0 - Switch
— L

= a7 seooml (/I I BRI B

4.6 4.0 -~ Switch + SparseMixer

4.5

4.4 3.8

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Epoch Epoch

Liu et al. (2023). Sparse backpropagation for MoE training. NeurlPS.
Liu et al. (2023). Bridging Discrete and Backpropagation: Straight-Through and Beyond. NeurlPS.

50

Today'’s topics

e Dynamic sparsity
- mixture-of-experts models:
activate subnetworks in an input-dependent way

- KV cache sparsification:
keep only a subset of past K/V activations

51

Dynamic activation sparsity: KV Cache Pruning

e For autoregressive generation, we maintain a history of all
previous key and value vectors (the “KV cache”) to avoid
recomputation

e Memory usage scales linearly with the length of the generated
sequence

e We can reduce both memory usage and computational cost by
implementing a KV cache eviction policy

Zhang et al. (2023). H20: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models. NeurlPS 52

Observation: attention matrices are approximately sparse

100 1 . :
e Additionally, the cumulative
attention scores for each token
S 2V | follows a power law distribution.
N 80 1
=
k=
8 70-
= OPT-30B
i OPT-13B
m— OPT-6.7B
0 10 20 30 40 50

Layer Index

Zhang et al. (2023). H20: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models. NeurlPS 53

H,O: Heavy Hitter Oracle

Decoding Step 4 Query

[Chitdren|1aughed | and | played | in
Value _
Key :,: 1
i
i 4O 1
- - - -
- Ao 0.02 0s Moo
Decoding Step 5 Query

Zhang et al. (2023). H20: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models. NeurlPS

Greedy heuristic: only keep k

tokens with highest cumulative

attention scores so far.

Example figure: cache size k = 3
“and” and “played” are evicted

since they have the lowest
cumulative scores

54

ROUGE-2

[T S)

H,O: Heavy Hitter Oracle

XSUM, LLaMA-7B

== Heavy-Hitter Oracle
Local
Full

ROUGE-2

[S A A)

100 80 60 40 20
KV Cache Budget (%)

0

XSUM, LLaMA-13B

167+
14 1
121
101

—— Heavy-Hitter Oracle
Local
Full

100 80 60 40 20
KV Cache Budget (%)

e ‘“local” baseline keeps only most recent tokens

Zhang et al. (2023). H20: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models. NeurlPS

0

XSUM, LLaMA-30B

4. == Heavy-Hitter Oracle

Local
Full

100 80 60 40 20
KV Cache Budget (%)

55

Recap

e Static sparsity - Optimal brain surgeon
- weight pruning: - SparseGPT: Fast OBS for LLMs
cut down a large LLM to a smaller LLM ~~ initron structured pruning

e Dynamic sparsity
- mixture-of-experts models: - Top-k softmax routing
activate subnetworks in an input-dependent way -~ OPtimizationissues

- KV cache sparsification:

keep only a subset of past K/V activations H,0: evict tokens with

lowest cumulative
attention

56

