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• LLMs & chatbots are all over the news

• How do you evaluate their performance?
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Overview



Outline

Overview evaluation of LLMs



Importance of evaluation in AI
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Quantify progress towards desired task to:

Identify 
improvements

Select 
models

Decide if 
production ready



• Scalability

• Relevance

• Discriminative power

• Interpretability

• Reproducibility

• Lack of bias
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Desiderata
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Application

• Interpretability

• Trust

• Relevance

Development

• Scalability

• Discriminative 
power

Academic 

• Reproducibility

• Robust to 
gamification

Desiderata

Desiderata depend on the type of benchmark
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Evaluation recipe

Evaluation dataset

Evaluation metric

+



• Clear task

• Closed-ended
• Limited answers

• Objective and known solution

=> Easy to automate benchmarks

Classic AI evaluation

8

Gold dog?

Predicted dog?
acc: 0



Evaluation challenges with LLMs
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• Diverse tasks

• Open-ended

• Answers not enumerable

• Continuum of quality 

=> Hard to build automated benchmarks
InstructGPT

[Ouyang+ 2022]



Evaluating LLM: instructions
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• ~Brute force…

• Collect as many “representative” 
instructions as possible



Evaluating LLM: metrics
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• Convert to close-ended task

• Reference-based heuristic

• Humans

• LLMs



Evaluating LLM: metrics
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• Convert to close-ended task

• Pro: scalable & understandable heuristic

• Con: changed task

• LLMs



Evaluating LLM: metrics
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• Convert to close-ended task

• Reference-based heuristic

• Humans

• LLMs

BLEU, ROUGE, BERTScore, …



Evaluating LLM: metrics
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• Convert to close-ended task

• Reference-based heuristic

• Pro: same task

• Con: many potential solutions



Evaluating LLM: metrics
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• Convert to close-ended task

• Reference-based heuristic

• Humans

• LLMs

Pro: desired eval

Con: not scalable nor reproducible



Evaluating LLM: metrics
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• Convert to close-ended task

• Reference-based heuristic

• Humans

• LLMs Pro: desired eval & scalable

Con: trust & requires oracle LLM



Outline

Overview evaluation of LLMs

Academic and open benchmarks

    Examples 
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Academic and open benchmarks

Goal: eval broad performance

Use case: development, selection, PR

Perplexity Close-ended 
kitchen sink

LLM-basedHuman chat
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Perplexity



• Use pretraining val loss

• To be more interpretable: use perplexity

• Avg per token => ~ length indep

• Exponentiate => indep of base

• Perplexity: between 1 and |Vocab|

• Intuition: number of tokens that you are hesitating between
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Perplexity

𝑃𝑃𝐿 𝑥1:𝐿 = 2
1
𝐿

 ℒ(𝑥1:𝐿) = ∏ 𝑝 𝑥𝑖 𝑥1:𝑖−1
−1/𝐿
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Between 2017-2023, models went from ”hesitating” between ~70 tokens to <10 tokens

Perplexity not used anymore for academic benchmark but still important for development

Perplexity
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Perplexity is highly correlated with downstream performance

Perplexity

But depends on data & tokenizer
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Perplexity

• Pro: simplicity

• Con: different task- Different task 
- Can’t compare (depends data & tok)
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Close-ended 
kitchen sink
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Holistic evaluation of language models (HELM) Huggingface open LLM leaderboard v2 

Collect many automatically evaluable benchmarks

Kitchen Sink



• Knowledge

• MMLU: most common “knowledge” benchmark

• “Pro”: harder, less noisy.
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OpenLLM v2: MMLU-Pro



Knowledge

Expert written questions that are hard for non-expert even with web.

Biology | Chemistry | Physics
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OpenLLM v2: GPQA



Reasoning & long-context

Murder mysteries | object placement questions | team allocation
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OpenLLM v2: MuSR



High school level math
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OpenLLM v2: MATH



Instruction following

Checks if follows formatting instructions, rather than content.
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OpenLLM v2: IFEval



23 challenging tasks
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OpenLLM v2: BBH



• Changed a few months ago

• More challenging benchmarks: 

• MMLU -> MMLU-Pro

• GMS8k -> MATH

• ARC -> GPQA

• Different aggregation: delta with random baseline
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OpenLLM v2: difference with v1
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Close-ended kitchen sink

• Pro: simplicity

• Con: doesn’t evaluate open-
ended generation
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Human chat



Idea: have users interact (blinded) with two chatbots, rate which is better.
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Chatbot Arena
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Chatbot Arena



Lots of coding, some role play.
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Chatbot Arena
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Human chat

• Pro: open-ended evaluation

• Con: scalability
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LLM-based



AlpacaEval

Goal: scaling “human” evaluation

[Li*, Zhang*, Dubois*, Taori* et al 2022]
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• We wanted to train instruction following LLM

• Need:

1. Data

2. Train

3. Tune

[Taori*, Gularjani*, Zhang*, Dubois*, Li* et al 2023]

Background: developing Alpaca

Idea: use an LLM!
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• Metric?

• Instructions?

AE: design



Win-rate: expected preference over baseline E   [p(      >      )]

AE: metric
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VS VS VS
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AE: metric

Keeps 
improving!

Similar to humans but >30x cheaper
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AE: instructions

~800 instructions



AlpacaEval: instructions
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• Aggregate datasets for our benchmark

• To distinguish models

• To be realistic => representative of Alpaca’s demo
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AlpacaEval: instructions

Instructions can differentiate between models
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AlpacaEval: instructions

Instructions are representative of our demo
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• 0.94 correlation with human ranking (Chat Arena)

• Scalable: <3min and <$10

• Community uptake: ~200 models

AE: benchmark



AlpacaEval: summary
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• Idea: LLM to scale evaluation of instruction following LLM

• Benefits:

• Scalable 

• High fidelity

• New challenges…



AlpacaEval 

Length-Controlled

Goal: decreasing spurious correlations

[Dubois et al 2022]



Background: length bias
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AlpacaEval prefers longer outputs 74% of the time
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Top models started (over)optimizing for length…

Background: length bias

Need fix!



AE LC: causal perspective
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What would the metric be if the baseline and model 

outputs had the same length?

    Idea: regression analysis



AE LC: metric
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1. Model AlpacaEval’s preference as a function of model, length, instruction

2. Use GLM to predict preferences if baseline’s and model’s outputs had same length

 

AE LC preference

AE preferences modeled by GLM
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Interpretable as 

win-rate

Retains mathematical 
properties

Easily 

extendible

Add terms to the GLM for 
new spurious correlations

AE LC: benefits

Model 

independence

Adding new model doesn’t 
modify old win-rates
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AE LC is less biased



58

Correlation with human ranking increases!

Highest correlation with Chat Arena 
(human ranking)



AlpacaEval LC: retrospectives
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Seems to have worked… but may need an update(?)



AlpacaEval LC: summary
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• Idea: regression analysis to alleviate spurious correlations

• Benefits:

• Less length bias

• Higer correlation with humans



Similar to AlpacaEval but multi-turn. Also good correlation with Arena (0.94)
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LLM based example: MT Bench
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LLM-based

• Pro: 

• Open-ended evaluation

• Scalable

• Will improve over time

• Con: 

• Trust

• Need oracle LLM

• Lack control 



RubricEval

Goal: scalable evaluation in expert domains

[Dubois et al 2024]

Preliminary results
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+ Scalable

- Requires oracle LLM

- Lack control

- Lack interpretability

Idea: separate deciding what is good and applying it

Background: LLM-based eval
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RubricEval: overview

Different potential 
eval guides
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Checklist

List of things to 
consider when 

evaluating

Solution

Best answer the 
expert could come 

up with

Analytic rubric

Different axes to 
consider and how to 
achieve performance 

levels

RubricEval: preliminary benchmark

Hard ML questions with 4 expert evaluation guides

List of errors

List of errors and 
grades to deduce 

like in Gradescope
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RubricEval: preliminary results

Significant

 improvement!
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RubricEval: preliminary results

Regardless of the evaluator



Outline

Overview evaluation of LLMs

Academic and open benchmarks

    Examples 

    Challenges
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Challenges: consistency
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Challenges: consistency eg MMLU

• MMLU has different implementations: 

• Prompts

• Generations
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Challenges: contamination

Closed models + pretraining => could have pretrained on the test set
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Detecting contamination

• Is the predicted likelihood too high?

Min-k-prob Exchangeability test

• Datasets online won’t be shuffled => 
shuffle and check likelihood
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Alleviating contamination

• Control # times can see

Private test set Dynamic test set

• Constantly change the inputs 
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Reach “human-level” performance too quickly
=> Dynamic test set

Challenge: saturation
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Most papers only evaluate on English and performance (accuracy)

We should use: MEGA, GlobalBench, XTREME

Monoculture of NLP benchmarking
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Reductive single metric issue 

• Performance is not all we care about:
• Computational efficiency 

• Biases

• …
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Consider computational efficiency

• MLPerf: time to achieve desired quality target
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Consider biases

• DiscrimEval: template-based. How would decision change based on the group.
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The challenges of challenges: statu quo issue

• Researchers are incentivized to keep same benchmark to compare to previous work

• 82% of papers of translation in 2019 only evaluated on BLEU despite many better



Outline

Overview evaluation of LLMs

Academic and open benchmarks

    Examples 

    Challenges

Extra: more LM for scalable evaluation
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Generate instructions

• Generate instructions that are risky

Red teaming AutoBencher

• Generate examples difficult and novel.



ToolEmu

Goal: scalable evaluation of LLM risks

[Ruan*, Dong* et al 2024]
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Problem:

- Tools need to be implemented

- Need to avoid risky actions in 
the real world (need sandbox)

ToolEmu: overview
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Idea: LM-emulator of tools!

ToolEmu: overview
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ToolEmu: overview

Here the goal was to evaluate risk
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Risks found with ToolEmu

>70% precision of true and realistic risks



Summary
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• Idea: LM-based sandbox for evaluation of LM agents

• Benefits:

• Scalable (>30x faster)

• High fidelity



Questions
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